Distributed representation of text

He He

NEW YORK UNIVERSITY

September 13, 2023

Logistics

- HW1 released. Due by next Friday 12pm.
- Plan for today:
- Wrap up logistic regression from last week
- Word embeddings
- Neural networks basics

Table of Contents

Review

Introduction

Count-based word embeddings

Prediction-based word embeddings

Neural networks

Last week

Generative vs discriminative models
for text classification

- (Multinomial) naive Bayes

What's the key assumption?

Last week

Generative vs discriminative models
for text classification

- (Multinomial) naive Bayes

What's the key assumption?

- Assumes conditional independence
- Very efficient in practice (closed-form solution)

Last week

Generative vs discriminative models
for text classification

- (Multinomial) naive Bayes

What's the key assumption?

- Assumes conditional independence
- Very efficient in practice (closed-form solution)
- Logistic regression

What's the main advantage?

Last week

Generative vs discriminative models
for text classification

- (Multinomial) naive Bayes

What's the key assumption?

- Assumes conditional independence
- Very efficient in practice (closed-form solution)
- Logistic regression

What's the main advantage?

- Works with all kinds of features
- Wins with more data [Ng and Jordan, 2001]

Last week

for text classification

- (Multinomial) naive Bayes

What's the key assumption?

- Assumes conditional independence
- Very efficient in practice (closed-form solution)
- Logistic regression

What's the main advantage?

- Works with all kinds of features
- Wins with more data [Ng and Jordan, 2001]

Feature vector of text input

- BoW representation
- N-gram features (usually $n \leq 3$)

Table of Contents

Review
Introduction
Count-based word embeddings
Prediction-based word embeddings
Neural networks

Objective

Goal: come up with a good representation of text

- What is a representation?

Objective

Goal: come up with a good representation of text

- What is a representation?
- Feature map: ϕ : text $\rightarrow \mathbb{R}^{d}$, e.g., BoW, handcrafted features

Objective

Goal: come up with a good representation of text

- What is a representation?
- Feature map: $\phi:$ text $\rightarrow \mathbb{R}^{d}$, e.g., BoW, handcrafted features
- "Representation" often refers to learned features of the input

Objective

Goal: come up with a good representation of text

- What is a representation?
- Feature map: $\phi:$ text $\rightarrow \mathbb{R}^{d}$, e.g., BoW, handcrafted features
- "Representation" often refers to learned features of the input
- What is a good representation?

Objective

Goal: come up with a good representation of text

- What is a representation?
- Feature map: $\phi:$ text $\rightarrow \mathbb{R}^{d}$, e.g., BoW, handcrafted features
- "Representation" often refers to learned features of the input
- What is a good representation?
- Leads to good task performance (often requires less training data)

Objective

Goal: come up with a good representation of text

- What is a representation?
- Feature map: $\phi:$ text $\rightarrow \mathbb{R}^{d}$, e.g., BoW, handcrafted features
- "Representation" often refers to learned features of the input
- What is a good representation?
- Leads to good task performance (often requires less training data)
- Enables a notion of distance over text: $d(\phi(a), \phi(b))$ is small for semantically similar texts a and b

Distance functions

Euclidean distance

For $a, b \in \mathbb{R}^{d}$,

$$
d(a, b)=\sqrt{\sum_{i=1}^{d}\left(a_{i}-b_{i}\right)^{2}} .
$$

Distance functions

Euclidean distance

For $a, b \in \mathbb{R}^{d}$,

$$
d(a, b)=\sqrt{\sum_{i=1}^{d}\left(a_{i}-b_{i}\right)^{2}}
$$

Assume a and b are BoW vectors. What if b repeats each sentence in a twice?

Distance functions

Euclidean distance

For $a, b \in \mathbb{R}^{d}$,

$$
d(a, b)=\sqrt{\sum_{i=1}^{d}\left(a_{i}-b_{i}\right)^{2}}
$$

Assume a and b are BoW vectors. What if b repeats each sentence in a twice? $\left(b_{i}=2 a_{i}\right)$

Distance functions

Euclidean distance

For $a, b \in \mathbb{R}^{d}$,

$$
d(a, b)=\sqrt{\sum_{i=1}^{d}\left(a_{i}-b_{i}\right)^{2}} .
$$

Assume a and b are BoW vectors. What if b repeats each sentence in a twice? ($b_{i}=2 a_{i}$)

Cosine similarity

For $a, b \in \mathbb{R}^{d}$,

$$
\operatorname{sim}(a, b)=\frac{a \cdot b}{\|a\|\|b\|}=\cos \alpha
$$

Angle between two vectors

Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine similarity to find the most relevant document.

What are potential problems?
Example:
Q: Who has watched Barbie?
She has watched Oppenheimer.
Barbie was shown here last week.

Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine similarity to find the most relevant document.

What are potential problems?
Example:
Q: Who has watched Barbie?
She has watched Oppenheimer.
Barbie was shown here last week.

- Similarity may be dominated by common words
- Only considers the surface form (e.g., do not account for synonyms)

TFIDF

Key idea: upweight words that carry more information about the document

TFIDF

Key idea: upweight words that carry more information about the document
Construct a feature map ϕ : document $\rightarrow \mathbb{R}^{|\mathcal{V}|}$
TFIDF:

$$
\phi_{w}(d)=\underbrace{\operatorname{count}(w, d)}_{\operatorname{tf}(w, d)} \times
$$

- Term frequency (TF): count of each word type in the document (same as BoW)

TFIDF

Key idea: upweight words that carry more information about the document
Construct a feature map ϕ : document $\rightarrow \mathbb{R}^{|\mathcal{V}|}$
TFIDF:

$$
\phi_{w}(d)=\underbrace{\operatorname{count}(w, d)}_{\operatorname{tf}(w, d)} \times \underbrace{\log \frac{\# \text { documents }}{\# \text { documents containing } w}}_{\operatorname{idf}(w)}
$$

- Term frequency (TF): count of each word type in the document (same as BoW)
- Reweight by inverse document frequency (IDF): how specific is the word to any particular document

TFIDF

Key idea: upweight words that carry more information about the document
Construct a feature map ϕ : document $\rightarrow \mathbb{R}^{|\mathcal{V}|}$
TFIDF:

$$
\phi_{w}(d)=\underbrace{\operatorname{count}(w, d)}_{\operatorname{tf}(w, d)} \times \underbrace{\log \frac{\# \text { documents }}{\# \text { documents containing } w}}_{\operatorname{idf}(w)}
$$

- Term frequency (TF): count of each word type in the document (same as BoW)
- Reweight by inverse document frequency (IDF): how specific is the word to any particular document
- Higher weight on frequent words that only occur in a few documents

TFIDF example

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is the product of $\mathrm{tf}=\log _{10}(20+1)=1.322$ and $\mathrm{idf}=.037$. Note that the idf weighting has eliminated the importance of the ubiquitous word good and vastly reduced the impact of the almost-ubiquitous word fool.

Figure: From Jurafsky and Martin.

Why do some words have zero weights?

Table of Contents

Review
Introduction

Count-based word embeddings

Prediction-based word embeddings

Neural networks

The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)

The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing! (example from Eisenstein's book)
Everybody likes tezgüino.

The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing! (example from Eisenstein's book)
Everybody likes tezgüino.
We make tezgüino out of corn.

The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing! (example from Eisenstein's book)
Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.

The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing! (example from Eisenstein's book)
Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.
Don't have tezgüino before you drive.

The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing! (example from Eisenstein's book)
Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.
Don't have tezgüino before you drive.
Idea: Represent a word by its neighbors.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word \times document

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word \times document
- word \times word

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word \times document
- word \times word
- person \times movie

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word \times document
- word \times word
- person \times movie
- note \times song

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word \times document
- word \times word
- person \times movie
- note \times song

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Construct a matrix where

- Row and columns represent two sets of objects
- Each entry is the (adjusted) co-occurence counts of the two objects

Step 2: Reweight counts

Upweight informative words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
Figure: Jurafsky and Martin.

Each row/column gives us a word/document representation.

Step 2: Reweight counts

Upweight informative words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
Figure: Jurafsky and Martin.

Each row/column gives us a word/document representation.
Using cosine similarity, we can cluster documents, find synonyms, discover word meanings...

An alternative way to reweighting using pointwise mutual information

$$
\operatorname{PMI}(x ; y) \stackrel{\text { def }}{=} \log \frac{p(x, y)}{p(x) p(y)}=\log \frac{p(x \mid y)}{p(x)}=\log \frac{p(y \mid x)}{p(y)}
$$

An alternative way to reweighting using pointwise mutual information

$$
\operatorname{PMI}(x ; y) \stackrel{\text { def }}{=} \log \frac{p(x, y)}{p(x) p(y)}=\log \frac{p(x \mid y)}{p(x)}=\log \frac{p(y \mid x)}{p(y)}
$$

- Symmetric: $\operatorname{PMI}(x ; y)=\operatorname{PMI}(y ; x)$
- Estimates:

$$
\begin{aligned}
\hat{p}(x \mid y) & =\frac{\operatorname{count}(x, y)}{\operatorname{count}(y)} \text { how often do word } x \text { occur in the neighborhood of } y \\
\hat{p}(x) & =\frac{\operatorname{count}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \operatorname{count}\left(x^{\prime}\right)} \text { how often do word } x \text { occur in the corpus }
\end{aligned}
$$

Positive PMI / PPMI

- Range: $(-\infty, \min (-\log p(x),-\log p(y)))$
- What does negative PMI mean?

Positive PMI / PPMI

- Range: $(-\infty, \min (-\log p(x),-\log p(y)))$
- What does negative PMI mean?
- Two words co-occur less frequently than chance
- Need large data to estimate small probabilities
- Difficult to judge unrelatedness by humans
- Positive PMI: $\operatorname{PPMI}(x ; y) \stackrel{\text { def }}{=} \max (0, \operatorname{PMI}(x ; y))$
- Application in NLP: measure association between words

Step 3: Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for efficiency

Step 3: Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for efficiency
Recall SVD: a $m \times n$ matrix $A_{m \times n}$ (e.g., a word-document matrix), can be decomposed to

$$
U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T}
$$

where U and V are orthogonal matrices, and Σ is a diagonal matrix.

Step 3: Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for efficiency
Recall SVD: a $m \times n$ matrix $A_{m \times n}$ (e.g., a word-document matrix), can be decomposed to

$$
U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T},
$$

where U and V are orthogonal matrices, and Σ is a diagonal matrix.
Interpretation:

$$
A A^{T}=\left(U \Sigma V^{T}\right)\left(V \Sigma U^{T}\right)=U \Sigma^{2} U^{T}
$$

- σ_{i}^{2} are eigenvalues of $A A^{T}$
- Connection to PCA: If columns of A have zero mean (i.e. $A A^{T}$ is the covariance matrix), then columns of U are principle components of the column space of A.

SVD for the word-document matrix

SVD for the word-document matrix

[board]

Computing the dense word vectors:

- Run truncated SVD of the word-document matrix $A_{m \times n}$
- Each row of $U_{m \times k} \Sigma_{k}$ corresponds to a word vector of dimension k
- Each coordinate of the word vector corresponds to a cluster of documents (e.g., politics, music etc.)

Summary

Count-based word embeddings

1. Design the matrix, e.g. word \times document, people \times movie.
2. Reweight the raw counts, e.g. TFIDF, PPMI.
3. Reduce dimensionality by truncated SVD.
4. Use word/person/etc. vectors in downstream tasks.

Key idea:

- Intuition: Represent an object by its connection to other objects.
- Lexical semantics: the word meaning can be represented by the context it occurs in.
- Linear algebra: Infer clusters (e.g., concepts, topics) using co-occurence statistics

Table of Contents

Review
Introduction
Count-based word embeddings

Prediction-based word embeddings

Neural networks

Learning word embeddings

Goal: map each word to a vector in \mathbb{R}^{d} such that similar words also have similar word vectors.

Learning word embeddings

Goal: map each word to a vector in \mathbb{R}^{d} such that similar words also have similar word vectors.

Can we formalize this as a prediction problem?

- Needs to be self-supervised since our data is unlabeled.

Learning word embeddings

Goal: map each word to a vector in \mathbb{R}^{d} such that similar words also have similar word vectors.

Can we formalize this as a prediction problem?

- Needs to be self-supervised since our data is unlabeled.

Distributional hypothesis: Similar words occur in similar contexts

- Predict the context given a word f : word \rightarrow context
- Words that tend to occur in same contexts will have similar representation

The skip-gram model

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

The skip-gram model

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

Assume conditional independence of the context words:

$$
p\left(w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k} \mid w_{i}\right)=\prod_{j=i-k, j \neq i}^{i+k} p\left(w_{j} \mid w_{i}\right)
$$

The skip-gram model

Task: given a word, predict its neighboring words within a window

> The quick brown fox jumps over the lazy dog

Assume conditional independence of the context words:

$$
p\left(w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k} \mid w_{i}\right)=\prod_{j=i-k, j \neq i}^{i+k} p\left(w_{j} \mid w_{i}\right)
$$

How to model $p\left(w_{j} \mid w_{i}\right)$?

The skip-gram model

Task: given a word, predict its neighboring words within a window

> The quick brown fox jumps over the lazy dog

Assume conditional independence of the context words:

$$
p\left(w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k} \mid w_{i}\right)=\prod_{j=i-k, j \neq i}^{i+k} p\left(w_{j} \mid w_{i}\right)
$$

How to model $p\left(w_{j} \mid w_{i}\right)$? Multiclass classification

The skip-gram model

Use the softmax function to predict context words from the center word

$$
p\left(w_{j} \mid w_{i}\right)=\frac{\exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}
$$

The skip-gram model

Use the softmax function to predict context words from the center word

$$
p\left(w_{j} \mid w_{i}\right)=\frac{\exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}
$$

What's the difference from multinomial logistic regression?

The skip-gram model

Use the softmax function to predict context words from the center word

$$
p\left(w_{j} \mid w_{i}\right)=\frac{\exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}
$$

What's the difference from multinomial logistic regression?

Implementation:

- $\phi: w \rightarrow \mathbb{R}^{d}$. For each word w, learn two vectors. ϕ can be implemented as a dictionary

The skip-gram model

Use the softmax function to predict context words from the center word

$$
p\left(w_{j} \mid w_{i}\right)=\frac{\exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}
$$

What's the difference from multinomial logistic regression?

Implementation:

- $\phi: w \rightarrow \mathbb{R}^{d}$. For each word w, learn two vectors. ϕ can be implemented as a dictionary
- Learn parameters by MLE and SGD (Is the objective convex?)

The skip-gram model

Use the softmax function to predict context words from the center word

$$
p\left(w_{j} \mid w_{i}\right)=\frac{\exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{ctx}}\left(w_{j}\right) \cdot \phi_{\mathrm{wrd}}\left(w_{i}\right)\right]}
$$

What's the difference from multinomial logistic regression?

Implementation:

- $\phi: w \rightarrow \mathbb{R}^{d}$. For each word w, learn two vectors. ϕ can be implemented as a dictionary
- Learn parameters by MLE and SGD (Is the objective convex?)
- $\phi_{\text {wrd }}$ is taken as the word embedding

Negative sampling

Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!

Negative sampling

Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!
Key idea: solve a binary classification problem instead

Is the (word, context) pair real or fake?

positive examples +

negative examples -
$w \quad c_{\text {pos }}$

apricot
apricot

apricospoon
apricot

w	$c_{\text {neg }}$	w	$c_{\text {neg }}$
apricot	aardvark	apricot seven	
apricot	my	apricot	forever
apricot	where	apricot dear	
apricot	coaxial	apricot if	

$$
p_{\theta}(\text { real } \mid w, c)=\frac{1}{1+e^{-\phi_{\mathrm{cx}}(c) \cdot \phi_{\mathrm{wrd}}(w)}}
$$

The continuous bag-of-words model

Task: given the context, predict the word in the middle

> The quick brown fox jumps over the lazy dog

Similary, we can use logistic regression for the prediction

$$
p\left(w_{i} \mid w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k}\right)
$$

How to represent the context (input)?

The continuous bag-of-words model

The context is a sequence of words.

$$
\begin{aligned}
c & =w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k} \\
p\left(w_{i} \mid c\right) & =\frac{\exp \left[\phi_{\mathrm{wrd}}\left(w_{i}\right) \cdot \phi_{\mathrm{BoW}}(c)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{wrd}}(w) \cdot \phi_{\mathrm{BoW}}(c)\right]}
\end{aligned}
$$

The continuous bag-of-words model

The context is a sequence of words.

$$
\begin{aligned}
c & =w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k} \\
p\left(w_{i} \mid c\right) & =\frac{\exp \left[\phi_{\mathrm{wrd}}\left(w_{i}\right) \cdot \phi_{\mathrm{Bow}}(c)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{wrd}}(w) \cdot \phi_{\mathrm{Bow}}(c)\right]} \\
& =\frac{\exp \left[\phi_{\mathrm{wrd}}\left(w_{i}\right) \cdot \sum_{w^{\prime} \in c} \phi_{\mathrm{ctx}}\left(w^{\prime}\right)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{wrd}}(w) \cdot \sum_{w^{\prime} \in c} \phi_{\mathrm{ctx}}\left(w^{\prime}\right)\right]}
\end{aligned}
$$

- $\phi_{\text {Bow }}(c)$ sums over representations of each word in c
- Implementation is similar to the skip-gram model.

Semantic properties of word embeddings

Find similar words: top-k nearest neighbors using cosine similarity

- Size of window influences the type of similarity
- Shorter window produces syntactically similar words, e.g., Hogwarts and Sunnydale (fictional schools)
- Longer window produces topically related words, e.g., Hogwarts and Dumbledore (Harry Porter entities)

Semantic properties of word embeddings

Solve word analogy problems: a is to b as a^{\prime} is to what?

Figure: Parallelogram model (from J\&H).

- man : woman :: king : queen

$$
\phi_{\mathrm{wrd}}(\operatorname{man})-\phi_{\mathrm{wrd}}(\text { king }) \approx \phi_{\text {wrd }}(\text { woman })-\phi_{\text {wrd }}(\text { queen })
$$

- Caveat: must exclude the three input words
- Does not work for general relations

Comparison

Count-based
matrix factorization
fast to compute interpretable components

Prediction-based
prediction problem
slow (with large corpus) but more flexible hard to interprete but has intriguing properties

- Both uses the distributional hypothesis.
- Both generalize beyond text: using co-occurence between any types of objects
- Learn product embeddings from customer orders
- Learn region embeddings from images

Evaluate word vectors

Intrinsic evaluation

- Evaluate on the proxy task (related to the learning objective)
- Word similarity/analogy datasets (e.g., WordSim-353, SimLex-999)

Extrinsic evaluation

- Evaluate on the real/downstream task we care about
- Use word vectors as features in NER, parsing etc.

Summary

Key idea: formalize word representation learning as a self-supervised prediction problem

Prediction problems:

- Skip-gram: Predict context from words
- CBOW: Predict word from context
- Other possibilities:
- Predict log \hat{p} (word | context), e.g. GloVe
- Contextual word embeddings (later)

Table of Contents

Review
Introduction
Count-based word embeddings
Prediction-based word embeddings

Neural networks

Feature learning

Linear predictor with handcrafted features: $f(x)=w \cdot \phi(x)$.
Can we learn intermediate features?

Feature learning

Linear predictor with handcrafted features: $f(x)=w \cdot \phi(x)$.
Can we learn intermediate features?
Example:

- Predict popularity of restaurants.
- Raw input: \#dishes, price, wine option, zip code, \#seats, size
- Decompose into subproblems:
$h_{1}([$ \#dishes, price, wine option $])=$ food quality
$h_{2}([$ zip code $])=$ walkable
$h_{3}([\#$ seats, size $])=$ nosie

Predefined subproblems

Learning intermediate features

Input	Hidden	Output
layer	layer	layer

Neural networks

Key idea: automatically learn the intermediate features.
Feature engineering: Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

$$
f(x)=w^{T} \phi(x)
$$

Feature learning: Automatically learn both the features (K hidden units) and the weights:

$$
h(x)=\left[h_{1}(x), \ldots, h_{K}(x)\right], \quad f(x)=w^{T} h(x)
$$

Activation function

- How should we parametrize h_{i} 's? Can it be linear?

Activation function

- How should we parametrize h_{i} 's? Can it be linear?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) . \tag{1}
\end{equation*}
$$

- σ is the nonlinear activation function.

Activation function

- How should we parametrize h_{i} 's? Can it be linear?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) \tag{1}
\end{equation*}
$$

- σ is the nonlinear activation function.
- What might be some activation functions we want to use?

Activation function

- How should we parametrize h_{i} 's? Can it be linear?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) \tag{1}
\end{equation*}
$$

- σ is the nonlinear activation function.
- What might be some activation functions we want to use?
- sign function? Non-differentiable.

Activation function

- How should we parametrize h_{i} 's? Can it be linear?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) \tag{1}
\end{equation*}
$$

- σ is the nonlinear activation function.
- What might be some activation functions we want to use?
- sign function? Non-differentiable.
- Differentiable approximations: sigmoid functions.
- E.g., logistic function, hyperbolic tangent function, ReLU

Activation function

- How should we parametrize h_{i} 's? Can it be linear?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{T} x\right) \tag{1}
\end{equation*}
$$

- σ is the nonlinear activation function.
- What might be some activation functions we want to use?
- sign function? Non-differentiable.
- Differentiable approximations: sigmoid functions.
- E.g., logistic function, hyperbolic tangent function, ReLU
- Two-layer neural network (one hidden layer and one output layer) with K hidden units:

$$
\begin{equation*}
f(x)=\sum_{k=1}^{K} w_{k} h_{k}(x)=\sum_{k=1}^{K} w_{k} \sigma\left(v_{k}^{T} x\right) \tag{2}
\end{equation*}
$$

Activation Functions

- The hyperbolic tangent is a common activation function:

$$
\sigma(x)=\tanh (x)
$$

Activation Functions

- More recently, the rectified linear (ReLU) function has been very popular:

$$
\sigma(x)=\max (0, x)
$$

- Much faster to calculate, and to calculate its derivatives.
- Work well empirically.

Multilayer perceptron / Feed-forward neural networks

- Wider: more hidden units.
- Deeper: more hidden layers.

Multilayer Perceptron: Standard Recipe

- Each subsequent hidden layer takes the output $o \in \mathbb{R}^{m}$ of previous layer and produces

$$
h^{(j)}\left(o^{(j-1)}\right)=\sigma\left(W^{(j)} o^{(j-1)}+b^{(j)}\right), \text { for } j=2, \ldots, L
$$

where $W^{(j)} \in \mathbb{R}^{m \times m}, b^{(j)} \in \mathbb{R}^{m}$.

Multilayer Perceptron: Standard Recipe

- Each subsequent hidden layer takes the output $o \in \mathbb{R}^{m}$ of previous layer and produces

$$
h^{(j)}\left(o^{(j-1)}\right)=\sigma\left(W^{(j)} o^{(j-1)}+b^{(j)}\right), \text { for } j=2, \ldots, L
$$

where $W^{(j)} \in \mathbb{R}^{m \times m}, b^{(j)} \in \mathbb{R}^{m}$.

- Last layer is an affine mapping (no activation function):

$$
a\left(o^{(L)}\right)=W^{(L+1)} o^{(L)}+b^{(L+1)},
$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^{k}$.

Multilayer Perceptron: Standard Recipe

- Each subsequent hidden layer takes the output $o \in \mathbb{R}^{m}$ of previous layer and produces

$$
h^{(j)}\left(o^{(j-1)}\right)=\sigma\left(W^{(j)} o^{(j-1)}+b^{(j)}\right), \text { for } j=2, \ldots, L
$$

where $W^{(j)} \in \mathbb{R}^{m \times m}, b^{(j)} \in \mathbb{R}^{m}$.

- Last layer is an affine mapping (no activation function):

$$
a\left(o^{(L)}\right)=W^{(L+1)} o^{(L)}+b^{(L+1)}
$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^{k}$.

- The full neural network function is given by the composition of layers:

$$
\begin{equation*}
f(x)=\left(a \circ h^{(L)} \circ \cdots \circ h^{(1)}\right)(x) \tag{3}
\end{equation*}
$$

Multilayer Perceptron: Standard Recipe

- Each subsequent hidden layer takes the output $o \in \mathbb{R}^{m}$ of previous layer and produces

$$
h^{(j)}\left(o^{(j-1)}\right)=\sigma\left(W^{(j)} o^{(j-1)}+b^{(j)}\right), \text { for } j=2, \ldots, L
$$

where $W^{(j)} \in \mathbb{R}^{m \times m}, b^{(j)} \in \mathbb{R}^{m}$.

- Last layer is an affine mapping (no activation function):

$$
a\left(o^{(L)}\right)=W^{(L+1)} o^{(L)}+b^{(L+1)}
$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^{k}$.

- The full neural network function is given by the composition of layers:

$$
\begin{equation*}
f(x)=\left(a \circ h^{(L)} \circ \cdots \circ h^{(1)}\right)(x) \tag{3}
\end{equation*}
$$

- Last layer typically gives us a score. (How to do classification?)

